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Chapter Three
Sinusoidal Steady State Analysis

3.1 Sinusoidal analysis and phasor
Consider a sinusoidally varying voltage
v(t) = V,,, sinwt (3.1)
Where
17,, = the amplitude of the sinusoid
w = the angular frequency in radians/s
wt = the argument of the sinusoid

The sinusoid is shown in Fig. 3.1(a) as a function of its argument and in Fig. 3.1(b) as a function
of time. It is evident that the sinusoid repeats itself every T seconds; thus, T is called the period
of the sinusoid. From the two plots in Fig. 3.1, we observe that w T = 27

il (3.2)
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Figure 3.1
A sketch of Vm sin ot: (2) as a function of wt, (b) as a function of t.
A more general form of the sinusoid,
v(t) = Vmsin(wt + 0) (3.3)

includes a phase angle 0 in its argument. Equation [1] is plotted in Fig. 3.2 as a function of wt.
Since corresponding points on the sinusoid Vi, sin(wt + 0) occur 6 rad, or 6/®w seconds, earlier,
we say that

o Vq sin(wt + 0) leads Vy, sinot by 6 rad.
e Vpsin ot lags Vi sin(ot + 0) by 0 rad.

In either case, leading or lagging, we say that the sinusoids are out of phase. If the phase
angles are equal, the sinusoids are said to be in phase.
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Fig. 3.2: The sine wave Vm sin(wt + 6) leads Vi sin wt by 0 rad.

The complex quantities are usually written in polar form rather than exponential form in order to
achieve a slight additional saving of time and effort. For example, a source voltage

v(t) = Vmcoswt = Vmcos(wt + 0 °) (3.4)

we now represent in complex form as

v(t) = Vm O (3.5)
and its current response

I(t) = Im cos(mt + ¢) (3.6)
becomes

i(t) =1m £ (3.7)

This abbreviated complex representation is called a phasor.
A real sinusoidal current
i () = Im cos(owt + @) = Re{ln ¢/@+9} (3.8)

We then represent the current as a complex quantity by dropping the instruction Re{}, thus adding
an imaginary component to the current without affecting the real component; further
simplification is achieved by suppressing the factor it

| = Inel? (3.9)
and writing the result in polar form:
| = Im £9¢ (3.10)

The process of returning to the time domain from the frequency domain is exactly the reverse of
the previous sequence. Thus, given the phasor voltage

V =115~45" volts

and the knowledge that ® = 500 rad/s, we can write the time-domain equivalent directly:



v(t) = 115 cos(500t — 45°) volts
If desired as a sine wave, v(t) could also be written
v(t) = 115sin(500t + 45°)  volts

We can proceed to our simplification of sinusoidal steady-state analysis by establishing the
relationship between the phasor voltage and phasor current for each of the three passive elements.

Example 3.1
Find the amplitude, phase, period, and frequency of the sinusoid

v(t) = 12 cos(50t + 10°)

Example 3.2

Calculate the phase angle between v; = —10 Sin (wt + 50°) and v; = 12 Sin (ot — 10°)

State which sinusoid is leading

> COE

no | e

sin ol

Figure 3.3
For Example 3.2.



3.2 Phasor Relationships for Circuit Elements

Now that we know how to represent a voltage or current in the phasor or frequency domain, one
may legitimately ask how we apply this to circuits involving the passive elements R, L, and C.
What we need to do is to transform the voltage-current relationship from the time domain to the
frequency domain for each element. Again, we will assume the passive sign convention.

3.2.1 The Resistor

We begin with the resistor. If the current through a resistor R is i = I,,Cos(wt + @) the
voltage across it is given by Ohm’s law as

v(t) = Ri(t) =R I,Cos(wt + D) (3.11) —"' —

The phasor form of this voltage isV = R I,,, £0 2R v $ R

But the phasor representation of the currentis I = I,,, £0 " o—

Here V = R 1 (3.12) o M
Figure 3.4

Voltage-current relations for a resistor in the:
(a) time domain, (b) frequency domain.

showing that the voltage-current relation for the resistor

in the phasor domain continues to be Ohm’s law, as in "1 _
the time domain. Figure 3.4 illustrates the voltage- v
current relations of a resistor. We should note from Eq.
(3.12) that voltage and current are in phase, as illustrated 1,
in the phasor diagram in Fig. 3.5. 4

% b

Figure 3.5
Phasor diagram for the resistor.
3.2.2 The Inductor
For the inductor L, assume the current through itis i = I,,Cos(wt + @) The voltage across
the inductor is

di
v= LE = —wLI,Sin(wt + @) (3.13)



Where —sin A = cos(4 + 90) N N

v = wlLl,Cos(wt + @+ 90) (3.14) . =0 v 31

Where

V=wLllhH+90 andI =1,0 and 290 =j :?% E’z—r__“

V = jwLI (3.15) (3) (b)
Figure 3.6

Voltage-current relations for an inductor in
the: (a) time domain, (b) frequency domain.

Im 4

showing that the voltage has a magnitude of and a phase *

of The voltage and current are out of phase. Specifically, \“’
the current lags the voltage by Figure 3.6 shows the !
voltage-current relations for the inductor. Figure 3.7
shows the phasor diagram.

0 Re

Figure 3.7

Phasor diagram for the inductor;
| lags V.

3.2.3 The Capacitor

For the capacitor C, assume the voltage across it is v = V,,Cos(wt + @) The current through
the capacitor is

dv — S

t=Cor (3.16) . :
By following the same steps as we took for the inductor or by T v F¢
applying Eq. (2.13) on Eq. (3.15), we obtain . )
I=jolV —V=—v  (317) i=CG f=ecy
]wC {d) by
Figure 3.8

Voltage-current relations for a capacitor in the:
(a) time domain, (b) frequency domain.



showing that the current and voltage are out of phase. To be

specific, the current leads the voltage by Figure 3.8 shows "
the voltage current relations for the capacitor; Fig. 3.9 gives N
the phasor diagram. AN v,
P
o
Figure 3.9

Phasor diagram for the capacitor; | leads V.

Table 3.1 summarizes the time domain and phasor domain representations of the circuit

elements.
Time Domain Frequency Domain
i 1
— A v=Ri V=RI =AM
+ v - + VvV -
i L i 1 oL,
— 11 v=L d—! V= jwLl - ;,:;F\
+ v - dt + vV -
i C ' i 1 ljoC
i I{ V= —fldt = —I . ¢
i\ jwC I\
+ r - + v —

3.3 Impedance and Admittance

In the preceding section, we obtained the voltage-current relations for the three passive elements
as

: : _ I
Y RI, Y JeL1, A —

ot (3.18)

These equations may be written in terms of the ratio of the phasor voltage to the phasor current
as

R~ wl
TR T BT

(3.19)

From these three expressions, we obtain Ohm’s law in phasor form for any type of element as

(3.20)

where Z is a frequency-dependent quantity known as impedance, measured in ohms.

7



The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, measured
in ohms (Q2).

we may choose to express impedance in either rectangular (Z = R + jX) or polar
(Z = |Z|£08) form.
In rectangular form, we can see clearly

e The real part, which arises only from real resistances (R)

e The imaginary component, termed the reactance, which arises from the energy storage
elements (XL and XC).

Both resistance and reactance have units of ohms, but reactance will always depend upon
frequency. An ideal resistor has zero reactance; an ideal inductor or capacitor is purely reactive
(i.e., characterized by zero resistance).

The admittance Y is the reciprocal of impedance, measured in siemens (S).

The admittance Y of an element (or a circuit) is the ratio of the phasor current through it to the
phasor voltage across it, or

e The real part of the admittance is the conductance G.
e The imaginary part is the susceptance B.

All three quantities (Y, G, and B) are measured in siemens.

1 1
Y =G+ jB === 3.21
TIPS 7T Ryjx (3:21)




3.4 Nodal Analysis for A.C circuits
The basic of Nodal analysis is KCL as shown in chapter one

Example 3.3

Find ix for circuit shown in figure 3.10.1

10 IH ey, ARy
AW—T—TIT — T
. | Il'l' . L[.i
WesdV(T)  =OF (P, FO5H W0V {3 L0 ndd
= 1
a b
Figure 3.10.



Example 3.4

Determine V1 and V- in the circuit shown in figure 3.11

R

Vil 1 48 2 |V,

045"V

PAN
a() — 30 E:J'ﬂn iZ]:::g
JT_
Figure 3.11
P/-Su}'-crnmic

Vi h

_-'_ S {.-
3a () %—;EH 60 ;};liﬂ
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H.W

1. by using Nodal analysis find v; and v, in the circuit shown in figure 3.12

0IF 4
: I T
I Y
+
oAl 102, < 1
10 2o ._u.ﬂLL; < _.: ,ﬁEH
L
Figure 3.12

2. Determine V1 and V2 in the circuit shown in figure 3.13

q” "1 mn,g ' Va
T80V -’:.‘;. ’% 40 == 410 ::- 10
=
Figure 3.13

3. Find the time-domain node voltages Vi(t) and V(t) in the circuit shown in Fig. 3.14.

50
It
‘il A ~ V2
100
IEAGP 50 ::7}.100Jr 30 §IOQ GP 0.5/-90° A
==
Fig. 3.14.

11



3.5 Mesh Analysis for A.C circuits
In mesh analysis, KVVL is used for each loop as we studied in chapter one
Example 3.5

Determine current lo in the circuit shown in figure 3.15

40
s
p I,fl_l'xl 1',..
/0P A 'd:‘ ) =0
FE] —
T -’I:;. OEZY
Y
50 '* 1] -l
L’
Figure 3.15
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Example 3.6

Find V, in the circuit shown in figure 3.16

13

—jd £} = (_IL::I '-1"& A g L)
50 50
AN T
-y ; 0
10/0° V (fif, -2 == ¥, () oA
Figure 3.16
lq'- A If Jl,.-Eir.]:n:n'ncsh
N i
I MRE:
Jan==1 [h) 4A ® PR
M ————— T
B4l , so
Yy N -RE=Y, N (D
0¥ k:.-" |ﬁ|"_} ! ’ 'ﬁ}_:; 'd./' A




H.W. 1. Determine current lo in the circuit shown in Figure 3.17
105°0° A

P

L

-t A0

|| T
lﬂ 1 l ” Y
< Ao (1) se 300V

- Lt

WL

Figure 3.17

2. Determine current lo in the circuit shown in Figure 3.18

Figure 3.18
3. Obtain expressions for the time-domain currents il and i2 in the circuit given as Fig. 3.19.
3 I S00uF @
e
10 cos 10% VC{D 4 mH 2§y
Figure 3.19

4. Use mesh analysis on the circuit of Fig. 3.20 to find I; and I..

I, I,

—_— —_—

10 /J0°V 15/90° vV 20/0°V

j5Q 30

Fig. 3.20
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3.6 Superposition AC Analysis

1. Turn off all independent sources except one source. Find the output (voltage or current) due
to that active source using the techniques covered in Chapter 1.

2. Repeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the contributions due to the
independent sources.

Example 3.7

Use superposition theorem to find Io for figure 3.21

441
A
.""_"\I 1|
sra(y) 'Y e '
floa ,---\
e (L) (2) wsmey
F T
Z ™y
sns (L) =—=-10
L’
Figure 3.21
40
LYY —
fi,
= —__|3L1
L oo A
L{ rTE I-Hi__r' J Y
12 :; = —j2
[
4 0}
JAAA
—
J_ | |.Kj TI..
5 A |:I +--__I # == —_I.E L N
“| i1 0 —
| LLLR [ 1z )
r
= T .
sn=E (L) =/—=i10
(h)
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Example 3.8

Use superposition theorem to find Vo for figure 3.22

IH 14 40
dil) +-"-.-"u-"'.*_ WY

Iln'
iy ne Lo /sy
wees2ev () ()2ansra 0P (3) 5N

figure 3.22
| {¥ 4 £}
hNV ¥
+ b~ | o |
o + v
Lt 3
(a)
j-'-'l- () 10 410}
TI—AAA—— W
ty, <
s v (F -i50 =
)
L 10
Ay

T
L
1 oo 2
100 &)2{—9&"& =0 240

T

(c)
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3.7 Thevenin and Norton AC analysis

Example 3.9

Find Thevenin equivalent at terminal a-b for figure 3.23

17

120/75° v ()

|
T

Jaa

o

=

=
Wi

L
(=]
=
r

Il
11

mzavr (0
120475 v (L)

d
" i,
<
—jb i =— ‘:; 44
+ ¥n 1
& —0 R
a2
g0 =




Example 3.10

Find Thevenin equivalent at terminal a-b for figure 3.24

18

400 i
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figure 3.24
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Example 3.11

Find Norton equivalent at terminal a-b for figure 3.25

19
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H.W

1. Use superposition theorem to find VO for figure below

EQ

"".'r'pll'-l'l'

* 5 o

75 sin 5t V lﬁ__"_'i) W= 02F = 1H I,iﬁl fcos 10 A

- s

2. Find Thevenin equivalent at terminal a-b for figure below

LRY j4 &
_l_‘ul_l'ulu'-_ln‘ i ]iﬂ"
+ v, -
-2 =
517 A .
10 g. } > 02w,
=
[ . b

3. Find Norton equivalent at terminal a-b for figure below and find lo

40 in
lu'l'u"'i'l'i"' rﬂ'-i'-"
k0 g -8R,
S MY I O
J—"
<100

v (3 ) )
nev (2) () a0 4
-5

.

b
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3.8 AC Power Analysis

Power analysis is of paramount importance. Power is the most important quantity in electric
utilities, electronic, and communication systems, because such systems involve transmission of
power from one point to another. Also, every industrial and household electrical device - every
fan, motor, lamp, pressing iron, TV, personal computer-has a power rating that indicates how
much power the equipment requires; exceeding the power rating can do permanent damage to an
appliance. The most common form of electric power is 50- or 60-Hz ac power. The choice of ac
over dc allowed high-voltage power transmission from the power generating plant to the
consumer.

3.8.1 Instantaneous and Average Power

the instantaneous power p(t) absorbed by an element is the product of the instantaneous voltage
v(t) across the element and the instantaneous current i(t) through it. Assuming the passive sign
convention,

plr) = vini(f)

(3.22)
The instantaneous power (in watts) is the power at any instant of time.

It is the rate at which an element absorbs energy. Consider the general case of instantaneous
power absorbed by an arbitrary combination of circuit elements under sinusoidal excitation, as
shown in Fig. 3.26 . Let the voltage and current at the terminals of the circuit be

it

—_—

+ Passive
el linzar
nebwork

Sinusoidal
SOUICE

p(t) = v(®)i(t) = VmIm cos(wt + @)cos wt (3.23)

which we will find convenient to rewrite in a form obtained by using the trigonometric identity
for the product of two cosine functions. Thus,

m mIm

V.1 V
"; Z[cos(2wt + @) + cos¢p] = ";

The last equation possesses several characteristics that are true in general for circuits in the
sinusoidal steady state. One term, the first is not a function of time; and a second term is included
which has a cyclic variation at twice the applied frequency. Since this term is a cosine wave, and
since sine waves and cosine waves have average values which are zero (when averaged over an

cos¢ + cos(Lwt + ¢) (3.24)

p(t) =

21



integral number of periods), this example suggests that the average power is 1/2 Vm Im cos o;
as we will see shortly, this is indeed the case.

3.8.2 AVERAGE POWER
Now let us obtain the general result for the sinusoidal steady state. We assume the general
sinusoidal voltage

v(t) = Vmcos(wt + 0) (3.25)
and current
i(t) = Imcos(wt + ¢ (3.26)

associated with the device in question. The instantaneous power is
p(t) = VmIm cos(wt + B)cos(wt + @) (3.27)

Again expressing the product of two cosine functions as one-half the sum of the cosine of the
difference angle and the cosine of the sum angle,

p(t) = %cos(e —¢) + %cos(th + 60+ ¢) (3.28)

we may save ourselves some integration by an inspection of the result.

The first term is a constant, independent of t. The remaining term is a cosine function; p(t) is
therefore periodic, and its period is %2T. Note that the period T is associated with the given current
and voltage, and not with the power; the power function has a period %T. However, we may
integrate over an interval of T to determine the average value if we wish; it is necessary only that
we also divide by T. Our familiarity with cosine and sine waves, however, shows that the average
value of either over a period is zero. There is thus no need to integrate Eq. [3.29] formally; by
inspection, the average value of the second term is zero over a period T (or ¥2T), and the average
value of the first term, a constant, must be that constant itself. Thus,

P ="""cos(6 — ¢) (3.29)
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Example 3.12
Given the time-domain voltage v =4 cos(nt/6) V, find both the average power and an expression

for the instantaneous power that result when the corresponding phasor voltage V = 420" V is
applied across an impedance Z =2./60" Q.
Solution:

The phasor current is V/£Z =2/-60° A, and so the average power is
P=%(4)(2)cos60°=2 W
We can write the time-domain voltage,
v(t) =4 cos(mt/6) V
and the time-domain current,
i(t)=2 cos(nt/6 —607) A
The instantaneous power, therefore, is given by their product:
p(t) = 8 cos(mt/6)cos(nt/6 — 60°)
=2 + 4 cos(nt/3 — 60°) W
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Example 3.13

Determine the average power generated by each source and the average power absorbed by

each passive element in the circuit of Fig. 3.26
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3.8.3 Maximum Average Power Transfer

In Chapter 1 we solved the problem of maximizing the power delivered by a power-supplying
resistive network to a load R Representing the circuit by its Thevenin equivalent, we proved
that the maximum power would be delivered to the load if the load resistance is equal to the
Thevenin resistance R. = Rth We now extend that result to ac circuits.

Consider the circuit in Fig. 3.27, where an ac circuit is connected to a load Z, and is represented
by its Thevenin equivalent. The load is usually represented by an impedance, which may model
an electric motor, an antenna, a TV, and so forth. In rectangular form, the Thevenin impedance
Zth and the load impedance Z, are

Limear |:| -
Cirncuit

Fig. 3.27 Finding the maximum average power transfer:

(a) circuit with a load, (b) the Thevenin equivalent.

fn = R + jXm
Ly = Ry + X,

(3.30)
The current through the load is
[ = "'l'l'h — ."l'l'h

I+t (R __.i:-f]'h? + (R +_||;.k.|lll (331)

the average power delivered to the load is

., Vou|*R./2

P:é”'ﬁ:a.: . |1|-.| L/ i

- (Rpy + R + (X, + X0 (3.32)

Our objective is to adjust the load parameters and so that P is maximum. To do this we set

9P and 2= equal to zero. From Eq. (3.32), we obtain
dR], Xy,
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dP Voin| "Re(X, + Xp)

Xy [(Rm + Rp)® + (¥ + X0)°T (3.33)
P |V IR + Re)® + (X, + X0)* — 2Re(Rmw + Ry)]
iy (R + Re)* + (X + X0 (3.34)
Setting 9P o zero gives
axXy,
Xp=—Xm,
(3.35)
) :
and setting — to zero results in
Ry,
R.= VR + (i + X, (3.36)

Combining Egs. (3.35) and (3.36) leads to the conclusion that for maximum average power
transfer, Z must be selected so that X.=-Xtn and i.e.,

Ly =R +jX; = Ry — jXp = 2%,

(3.37)

For maximum average power transfer, the load impedance Z. must be equal to the complex
conjugate of the Thevenin impedance Zt.

_ [Vl
TTILY HRH—_

(3.38)

This means that for maximum average power transfer to a purely resistive load, the load
impedance (or resistance) is equal to the magnitude of the Thevenin impedance.
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Example 3.14
Determine the load impedance Z. that maximizes the average power drawn from the circuit of
Fig. 3.28. What is the maximum average power?

40 FERY.
Ay L £11%

i <80
o = i
0707V () j_ H z,
_j6 0

-

Fig. 3.28.
40 jsi
Ay T—ao
= &0 Zm
.|?-
= —j6i1]
1T .
40 j5i0

27



Example 3.15

In the circuit in Fig. 3.29, find the value of that will absorb the maximum average power.
Calculate that power.

s 04
I

"1'11'"}"'- ”

e, 1 <
50/3° Y (+) 00 - <
150/30°V (%) J_nngf;. 2

Fig. 3.29
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3.8.4 Effective or RMS Value

Use of RMS Values to Compute Average Power

The average power delivered to an R ohm resistor by a sinusoidal current is
P=%I1%R

Since I¢r = Im/~/2, the average power may be written as
P=IlsR

The other power expressions may also be written in terms of effective values:
P = Vet letr cos(0 — §)
P = Ve /R

3.8.5 APPARENT POWER AND POWER FACTOR
The product of the effective values of the voltage and current is not the average power; we define
it as the apparent power.

P = Vet lets

Dimensionally, apparent power must be measured in the same units as real power, since
cos(0 — @) is dimensionless; but in order to avoid confusion, the term volt-amperes, or VA, is
applied to the apparent power.

Since cos(0 — @) cannot have a magnitude greater than unity, the magnitude of the real power can
never be greater than the magnitude of the apparent power.

The ratio of the real or average power to the apparent power is called the power factor, symbolized
by PF. Hence,

PF = average power/apparent power = Vet lett cos(0 — §)/Vesr lerr = cos(0 — ¢)

In the sinusoidal case, the power factor is simply cos(0 — ¢), where (6 — ¢) is the angle by which
the voltage leads the current. This relationship is the reason why the angle (0 — ¢) is often referred
to as the PF angle.

For a purely resistive load, the voltage and current are in phase, (0 — ¢) is zero, and the PF is
unity.
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Example 3.16
Calculate values for the average power delivered to each of the two loads shown in Fig. 3.30, the
apparent power supplied by the source, and the power factor of the combined loads.

—_

2-j10

D 1+j50

60@Vrms(

'S

Fig. 3.30

Solution:
We require lesr:
| =60£0°%(3 +j4) =12,/-53.13° A rms
SO ler =12 Arms,and ang [ =-53.13".
The average power delivered to the top load is given by
Pupper = PeiiRiop = (12)4(2) = 288 W
and the average power delivered to the right load is given by
Prower = 1%etRright = (12)3(1) = 144 W
The source itself supplies an apparent power of Vs lesr = (60)(12) = 720 VA.

Finally, the power factor of the combined loads is found by considering the voltage and current
associated with the combined loads.

H.W.: For the circuit of Fig. 3.31, determine the power factor of the combined loads if Z, = 10

Q.
L

—_—

2-j10

60/0° V rms @) Z,

Fig. 3.31
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3.8.6 COMPLEX POWER

In this section, we define complex power to allow us to calculate the various contributions to the
total power in a clean, efficient fashion. The magnitude of the complex power is simply the
apparent power. The real part is the average power and—as we are about to see—the imaginary
part is a new quantity, termed the reactive power, which describes the rate of energy transfer

into and out of reactive load components (e.g., inductors and capacitors).

If we first inspect the polar or exponential form of the complex power,

S = Vet lesr e 1079

we see that the magnitude of S, Veslerr, is the apparent power. The angle of S, (0 —¢), is the PF

angle (i.e., the angle by which the voltage leads the current).

In rectangular form, we have

S=P+jQ
P = Vest lett cos(0—9) average power
Q = Vest lett sin(0—¢) reactive power
° . -
Quantity Symbol Formula Units
Average power P VeteLf cos(8 — o) watt (W)
Reactive power Q Vet Lo sin(® — @) volt-ampere-reactive (VAR)
Complex power S P+j0
Vesilesi /6 — ¢ volt-ampere (VA)
Verler
Apparent power S| Vst Teft volt-ampere (VA)
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Example 3.17

An industrial consumer is operating a 50 kW (67.1 hp) induction motor at a lagging PF of 0.8.
The source voltage is 230 V rms. In order to obtain lower electrical rates, the customer wishes to
raise the PF to 0.95 lagging. Specify a suitable solution.

O
—
* | l I 1 I
"] Sl S2
(motor) (corrective
- device)
o,
Fig. 3.32

Solution:

The complex power supplied to the induction motor must have a real part of 50 kW and an
angle of cos™(0.8), or 36.9°. Hence,

S1=50£36.97/0.8 =50 +j37.5 kVA
In order to achieve a PF of 0.95, the total complex power must become
S=S, + S, = (50/0.95) £cos }(0.95) = 50 + j16.43 KVA
Thus, the complex power drawn by the corrective load is
S, =—j21.07 KVA

The necessary load impedance Z, may be found in several simple steps. We select a phase angle
of 0° for the voltage source, and therefore the current drawn by Z; is

1,°= So/V = —j21,070/230 = —j91.6 A
or

I, =j91.6 A
Therefore,

Z, = VI, =230/j91.6 =—j2.51 Q

If the operating frequency is 60 Hz, this load can be provided by a 1056 puF capacitor connected
in parallel with the motor. However, its initial cost, maintenance, and depreciation must be
covered by the reduction in the electric bill.
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H.W.:
1- For the circuit shown in Fig. 3.33, find the complex power absorbed by the (a) 1 Q resistor;
(b) =110 Q capacitor; (c) 5 +j10 Q impedance; (d) source.

1Q
MA—

50

A

120 /0° V rms ({)

= 10 O
il

Fig. 3.33

2- A 440 V rms source supplies power to a load Z. = 10 + j2 Q through a transmission line
having a total resistance of 1.5 Q. Find (a) the average and apparent power supplied to the load;
(b) the average and apparent power lost in the transmission line; (c) the average and apparent
power supplied by the source; (d) the power factor at which the source operates.
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